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The reaction of titanium cyclopropylidene complexes, prepared

by the reductive titanation of 7,7-dichlorobicyclo[4.1.0]heptanes,

with alkynes produced air and moisture stable titanacyclo-

butenes with a spiro-bonded cyclopropane.

Metallacycles fused with a small ring are an interesting class of

compounds because of their unique structure and reactivity. A

variety of metallacycles with spiro-bonded cyclopropane rings

have been prepared by the reaction of alkylidenecyclopro-

panes, transition metal complexes and unsaturated com-

pounds, such as alkenes and alkynes.1 However, the

preparation of metallacyclobutenes linked to a cyclopropane

in a spirocyclic manner has not been reported, and hence their

reactivity and stability are not yet known.

Recently, we reported that titanium cyclopropylidene com-

plexes 1 are readily prepared by the reductive titanation of 1,1-

dichlorocyclopropanes 2 with the titanocene(II) reagent

Cp2Ti[P(OEt)3]2 (3).
2 This finding prompted us to investigate

the preparation of spirocyclic organotitanium compounds 4

by the reaction of 1 with alkynes 5 (Scheme 1).

Treatment of the titanium cyclopropylidene complex 1a,

prepared by the reductive titanation of 7,7-dichlorobicy-

clo[4.1.0]heptane (2a) with the titanocene(II) reagent 3, with

diphenylacetylene (5a) gave spirocyclic titanacyclobutene 4a

as an air and moisture stable brownish-red solid (Scheme 2).z
The titanacyclobutenes having a bicyclo[4.1.0]heptane moiety,

4b and 4c, were also found to be unsusceptible to air and

moisture, and could be isolated. The titanacyclobutenes 4

(R2 = H) having a substituent on their cyclopropane ring

were, however, unstable under atmospheric circumstances,

and gradually hydrolyzed during isolation. The structure of

4a was confirmed by an X-ray diffraction study, as shown in

Fig. 1.3 The stereochemistry of 4a indicates that the cis-fused

cyclohexane ring shields the most reactive allylic carbon–

titanium bond of 4a. The molecular structure of 4a also

suggests that the titanacycles 4 would be formed through the

approach of alkynes from the less sterically-hindered side of

cyclopropylidene complexes 1.

Hydrolysis of the isolated titanacyclobutenes 4a–c produced

synthetically useful alkenylcyclopropanes 6a–c as single iso-

mers in good yields (Table 1). The stereochemistry of titana-

cyclobutenes 4 are integrally reflected in those of

alkenylcyclopropanes 6. The two substituents (R3) originating

from the alkynes were found to be cis to each other. In

addition, the NOE experiments of 6a and 6b indicated that

the alkenyl group of the cyclopropane ring was trans with

respect to the six-membered ring. Therefore, the protonation

of 4 should proceed with the retention of stereochemistry of

the carbon–carbon double bond and the cyclopropane ring.

Scheme 1

Scheme 2

Fig. 1 Molecular structure of titanacyclobutene 4a. Principal bond

lengths (Å) and angles (1): Ti1–C1 2.130(3), Ti1–C3 2.100(3), C1–C2

1.543(4), C2–C3 1.339(4); C1–Ti1–C3 71.22(12), C2–C1–Ti1

82.62(18), C1–C2–C3 117.3(3), C2–C3–Ti1 88.7(2).
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Alkenylcyclopropanes 6 were also obtained along with trace

amounts of by-products (alkylidenecyclopropanes 7) by the

in situ hydrolysis of titanacyclobutenes 4 without isolation

(Scheme 3). Thus, the reaction of 2a with 5b afforded the

alkenylcyclopropane 6c after an aqueous work-up (Table 2,

entry 3). Similar treatment of carbene complexes 1, generated

from several 1,1-dichlorocyclopropanes 2, with symmetrical

alkynes 5 produced alkenylcyclopropanes 6. Although no

regioselectivity was observed in the reaction of unsymmetrical

internal alkynes, the reaction of terminal alkynes proceeded

with good regioselectivity; for example, the reaction of 2a with

para-methoxyphenylacetylene (5d) gave 6g in 64% yield with a

small amount of its regioisomer 6g0 (Scheme 4). As shown in

Table 2, entries 3–6, the stereochemistry of 6, formed by the

reaction with aliphatic alkynes, is the same as that obtained by

the hydrolysis of isolated 4a–c. On the contrary, the reaction

with 5a gave either the E-isomer predominantly or a mixture

of the two stereoisomers (Table 2, entries 1 and 2). The

inversion of the double bond geometry of 6a and 6b, obtained

by the in situ hydrolysis, was associated with the inversion of

stereochemistry of the cyclopropane ring; E-6a and 6b were

proved to have a cis-configuration.

It was suspected that the formation of E-6a and 6b by the

in situ hydrolysis of 4a and 4b was attributable to the action of

certain low-valent titanium species. Next, the hydrolysis of 4a

was examined in the presence of titanocene(II) species 3. After

4a was mixed with 3 in THF at 25 1C, the mixture was treated

with 1MNaOH (Scheme 5). As expected, E-6a was exclusively

produced in 79% yield. This result clearly shows that the

formation of E-6a and 6b is due to the reaction of 4a with low-
valent titanium species during the hydrolysis, though the

detailed reaction pathway is not clear at present.

In conclusion, we have demonstrated that titanacyclobu-

tenes having a spiro-bonded cyclopropane were produced by

the successive treatment of 1,1-dichlorocyclopropanes with a

titanocene(II) reagent and alkynes. Alkenylcyclopropanes are

useful intermediates in various organic transformations, such

as the magnification to cyclopentenes,5 and [5+2],6,7

[5+2+1]7,8 and [5+1+2+1] cycloadditions.9 Our procedure

Table 1 Hydrolysis of titanacyclobutenes 4a

Entry 4 Product 6 Yield (%)

1 4a Z-6a 68

2 4b Z-6b 67

3 4c E-6cb 86

a Carried out in 1 M NaOH/THF (1 : 1) under reflux for 3 h. b Single

cis/trans isomer. The stereochemistry was not determined.

Scheme 3

Table 2 Formation of alkenylcyclopropanes 6a

Entry 2 5 Product 6 Yield (%)b

1c 2a 5a E-6a (78)

Z-6a (trace)

2 2b 5a E-6b (36)

Z-6b (39)

3 2a 5b E-6c (74)d,e

4 2b 5b E-6d (69)

5 2c 5b E-6e (62)d,e

6 2d 5c E-6f (46)f

a All the reactions were performed using a similar procedure, as

described in ref. 4. b Based on the alkyne 5 used. c Carried out using

7 equiv. of 3. d Single cis/trans isomer. The stereochemistry was not

determined. e Contaminated with a trace amount of the alkylidene-

cyclopropane 7. The yield was corrected for the contaminant. f trans :

cis = 89 : 11.
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for the preparation of alkenylcyclopropanes is versatile and

may have wide applications, because a variety of the starting

materials are readily available through the dichlorocyclopro-

panation of alkenes with CHCl3–NaOH.10
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Notes and references

z A representative experimental procedure for the isolation of titana-
cyclobutenes: To a dry flask charged with finely powdered molecular
sieves 4A (1.00 g), magnesium turnings (0.243 g, 10.0 mmol) and
Cp2TiCl2 (2.49 g, 10.0 mmol) were added THF (20 cm3) and P(OEt)3
(3.43 cm3, 20.0 mmol), successively, with stirring, at 25 1C, under
argon. After 3 h, a THF (2 cm3) solution of 2a (0.660 g, 4.0 mmol) was
added to the reaction mixture, which was then stirred for a further 10
min. Then, a THF (2 cm3) solution of 5a (0.357 g, 2.0 mmol) was
added, and the reaction mixture was stirred for a further 16 h. After
filtration through a glass filter, the filtrate was chromatographed over
alumina gel (20 g, eluted with hexane (40 cm3)). The eluate was
evaporated to dryness in vacuo, giving a brownish-red solid. After
the solid had been washed with hexane (3 � 3 cm3), pure 4a was
obtained (0.668 g, 74%). 4a: m.p. 196–198 1C (dec.); found: C, 82.73;
H, 6.84. C31H30Ti requires C, 82.66; H, 6.71%; dH (300 MHz, CDCl3,
Me4Si) 0.85–0.99 (2 H, m), 1.10–1.31 (4 H, m), 1.73–2.06 (4 H, m), 6.11
(10 H, s), 6.58 (2 H, d, J = 7.2 Hz), 6.74 (2 H, d, J = 6.8 Hz), 6.95 (1
H, t, J= 7.2 Hz), 7.05 (2 H, dd, J= 7.5 and 7.5 Hz), 7.16 (1 H, t, J=
7.2 Hz) and 7.24 (2 H, dd, J = 7.5 and 7.5 Hz); dC (75 MHz; CDCl3);
22.2, 23.4, 24.7, 85.7, 105.0, 110.9, 124.9, 125.6, 127.6, 127.7, 127.8,
129.8, 137.5, 143.2 and 205.0; nmax/cm

�1 3072, 3057, 2975, 2925, 2853,
1591, 1540, 1487, 1476, 1458, 1440, 1382, 1171, 1155, 1066, 1016, 957,
838, 804, 778 and 761.
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